7931のあたまんなか

日々考えること、読書メモ、数学、交通関係など。うつと生きる30代後半の男です。

連載「やわらかいイデアの話」 ~ 『数学セミナー』読書メモ

数学セミナー』2018年4月号から、藤田博司さんによる「やわらかいイデアのはなし」が連載されています。

位相空間の初歩の話をする連載です。

各月の内容を自分なりにまとめるのがこの記事の目的です。

なお、偶数月号で講義、奇数月号で前月の演習問題の解説をするスタイルの予定とのことです。

私の位相空間の思い出

連載の内容まとめの前に、私にとっての位相空間の思い出を書いておきます。

位相空間を初めて知ったのは大学1年の数学科の講義で、教科書は『集合・位相入門』(松坂和夫著)が指定されました。

集合・位相入門

集合・位相入門

位相空間の特徴づけとして、開集合系の公理から入りました。

その後、閉集合や近傍などの概念、写像の連続性、点列の収束、距離空間、コンパクト性などと進んだ記憶があります。

ユークリッド空間  \mathbb{R}^n での各概念のイメージはおおよそつかめましたが、一般の位相空間ではイメージができないまま卒業したという形です。

【第1回 - 2018年4月号】大きい数・近い点・近傍フィルター

まずは、集合の基本についての説明です。

次は、「十分大きな実数」「十分近い点」という一見すると不思議な言葉について考え、フィルター近傍フィルターの定義が説明されます。

この近傍フィルターを手がかりに、位相について学ぼうということです。

最初に書いた開集合系とは異なる導入なので、今後の展開が楽しみです。

【第2回 - 2018年5月号】大きい数・近い点・近傍フィルター(演習)

第1回で出された4つの演習問題の解説です。

演習3の(5)の証明は私も試みましたが、議論が煩雑になり混乱してしまいました。本文中の記号でいうと、  r, \ \mathrm{P}, \ \mathrm{P'} , \ \mathrm{Q} を証明中で混乱して使ってしまったのが原因でした。

なお、本筋からずれますが、本文中の次の言葉が印象的でした。

大学の数学に初めて触れる人の中には,こうした「正解がひとつでない状況」に戸惑う人も多いようです。
(『数学セミナー 2018年5月号』46ページより引用)

本文中の例とは異なりますが、「ε-δ式の証明で具体的にδを与えるときに複数の候補からどれを選ぶかで悩む」というようなことです。

私にも同じ経験があるので、この気持ちはよ~くわかります。

【第3回 - 2018年6月号】近傍フィルターを生み出すしくみ ― 距離関数と開集合系

これまでに導入された近傍フィルターと今回導入される開集合系が同等であることをが説明されています。

距離空間

  • 距離関数の定義
  • 距離空間の例
    •  \mathbb{R}^2 上の距離(通常とは異なる距離)
    •  \mathbb{N} のべき集合上の距離
      • 部分集合の対称差を使って定義する。
      • カントール空間のひとつの実現方法
    •  \mathbb{Z} 上の)  p 進距離
  • 距離空間であれば、近傍フィルターは定義される。
  • 逆に、近傍フィルターは必ずしも距離関数で与えられるわけではない。
    • 本文に具体例あり。
    • あらゆる距離関数について、具体例で示した近傍フィルターが得られないことを示している。

近傍フィルターと開集合系

  • 近傍フィルターの性質を吟味して、開集合を定義している。
  • 開集合の性質を吟味して、開集合系を定義している。
  • 近傍フィルターを定めることと開集合系を定めることは同等であることを示し、位相空間を定義している。